一 目 次 一

第1章	EDA と EDA 標準 WG 活動 ······	1-1
1.	EDA とは?	1-3
2.	IBIS とは?	1-3
2. 1	IBIS モデルの歴史	1-3
2. 2	IBIS 仕様とその推移	1-4
3.	JEITA/EC センター EDA 標準 WG の活動	1-5
3. 1	EDA 標準 WG 設立の背景 ······	1-5
3. 2	現状認識と課題	1-6
3. 3	EDA 標準 WG 活動の狙い	1-6
3. 4	EDA 標準 WG 活動の背景 ······	1-7
4.	伝送線路シミュレーションと EDA モデル	1-7
4. 1	伝送線路シミュレーション	1-7
4. 2	EDA モデルの種類	1-8
4. 3	高速信号の電気設計の現状と課題	
5.	EDA 標準 WG 活動指針 ······	
6.	EDA 標準 WG の位置付け ······	1-11
第2章	IBIS モデルの品質	
1.	IBIS モデルの概要	
1. 1	IBIS モデルとは ····································	
1. 2	IBIS モデルの基本構成	
1. 3	IBIS モデルのバージョン ····································	
1. 4	IBIS モデルを用いたシミュレーションにおける注意点	
1. 5	IBIS モデルファイルの例 ····································	
2.	品質活動	2-12
2. 1		2-12
2. 2		2-13
2. 3		2-15
※ 参	5文献	2-15
*** - -* -		
	インターコネクトモデル (ICM)	3-1
1.	インターコネクトモデル	3-4
1. 1	インターコネクトモデルとは	3-4
1. 2	モデルの必要性	3-5
1. 3	注意点	3-6

2.		S パラメータモデル ····································	3-7
2.	1	S パラメータモデルとは	3-7
2.	2	S パラメータモデルの作成方法	3-8
2.	2. 1	S パラメータの取得方法	3-8
2.	2. 2	注意点	3-9
2.	2. 3	S パラメータの性質と検証	3-9
2.	3	Touchstone フォーマット	3-11
2.	4	Touchstone フォーマットの拡張	3-14
2.	4. 1	Touchstone 2.0 ·····	3-14
	(1)	いきさつ	3-15
	(2)	Touchstone 2.0 のフォーマット(特徴)	3-15
	(3)	Touchstone 2.0 で導入された技術とその相互変換の方法	3-16
2.	4. 2	X パラメータ	3-19
2.	5	使用方法と注意点	3-20
2.	5. 1	使用前の確認	3-20
2.	5. 2	諸設定	3-21
3.		等価回路モデル	3-23
3.	1	等価回路モデルとは	3-23
3.	2	等価回路モデルの作成方法	3-23
3.	2. 1	基本素子のモデル	3-24
	(1)	抵抗器・コンデンサ・コイル	3-24
	(2)	伝送線路	3-25
3.	2. 2	周波数関数の等価回路表現	3-26
	(1)	Debye 型の緩和モデル ·····	3-27
	(2)	Richter 型の緩和モデル ·····	3-29
3.	3	netlist のフォーマット	3-34
3.	3. 1	SPICE & netlist	3-34
3.	3. 2	netlist の文法 ·····	3-35
	(1)	全体の構成	3-35
	(2)	素子の記述	3-36
	(3)	回路構成の際の注意事項	3-37
	(4)	その他の注意事項	3-38
3.	4	使用方法と注意点	3-40
3.	4. 1	使用前の確認	3-40
3.	4. 2	注意点	3-41
4.		補足	3-43
4.	1	受動性 (passivity) ·····	3-43
4.	2	因果性(causality) ····	3-45
4.	2. 1	因果性とは	3-45
4.	2. 2	クラマース・クローニッヒの関係	3-48

4.	2.	3	応用例	3-50
		(1)	Bode-Fano 則 ·····	3-50
		(2)	フィルタ	3-51
4.	2.	4	因果律違反の例	3-52
		(1)	簡単な例	3-52
		(2)	フィルタ	3-52
		(3)	表皮効果	3-56
4.	3		回路シミュレータ小史	3-61
5.			諸注意	3-62
5.	1		数式の記号	3-62
5.	2		商標	3-62
5.	3		アクロニム (頭字語)	3-62
*	参	考文南	ξ	3-63
		_ ~-	and a limited a state limit	
	. 章	PC]	B モデル概論と課題	4-1
1.			はじめに	4-3
2.			PCB モデルとプリント配線板の断面構造	4-4
3.			PCB モデルの抽出 ·····	4-5
3.	1		プリント配線板の断面構造	4-5
3.	2		フィールド・ソルバ	4-7
3.	3		PCB モデル抽出ソフトウェアの制限	4-8
4.			S パラメータ	4-9
4.	1		S パラメータとは	4-9
4.	2		S パラメータの抽出	4-10
5.			まとめ	4-11
 _				
第5	草	ED.	A シミュレーション技術 ····································	5-1
1.			概論	5-3
1.			プリント基板設計における EDA シミュレーション ····································	5-3
1.	2		シミュレーションの活用	5-4
2.			SI 事例 DDR2/3 ·····	5–6
2.	1		伝送線路シミュレータの活用	5-6
2.	2		FPGA シミュレーションキットの活用	5-6
2.	3		受動部品モデルの活用	5-8
2.	3.	1	受動部品モデルライブラリの活用	5-8
2.	3.	2	S パラメータモデルの活用	5-9
2.	4		まとめ	5-10
3.			SerDes 信号の解析手法 ····································	5-11
3.	1		シリアル信号とシングルエンド	5-11
3.	2		シリアル信号の減衰 (Loss)	5-13

3.	3	シリアル信号の ISI(Inter Symbol Interference)	5-15
3.	4	Tx、Rx モデル ·····	5-16
3.	5	Channel Analysis · · · · · · · · · · · · · · · · · ·	5-19
3.	6	$\label{eq:Algorithmic Model Interface (AMI)} Algorithmic Model Interface \ (AMI) \\$	5-20
3.	7	まとめ	5-22
※		参考文献	5-24
4.		PI のモデリングとシミュレーション	5-25
4.	1	PI の現象と問題	5-25
4.	2	PI の観測とシミュレーション方法	5-25
4.	3	PI シミュレーションの構成要素	5-26
4.	4	PI モデルの要件	5-27
4.	5	PI シミュレーションの例	5-28
4.	6	PI モデルの課題	5-32

■IBIS MODELING COOKBOOK For IBIS Version4.0

IBIS 4.0 版のための IBIS モデルのクックブック【和訳】